

Evaluation of MU-MIMO Digital Beamforming Algorithms in B5G/6G LEO Satellite Systems

M.R. Dakkak, D.G. Riviello , A. Guidotti , A. Vanelli-Coralli

Department of Electrical, Electronic and Information Engineering (Guglielmo Marconi)

ASMS/SPSC Conference, September 6-8, 2022

Introduction

The integration of the (NTNs) component within the 5G (NR) terrestrial ecosystem is to

- improve the system flexibility, adaptability, and resilience
- extend the 5G coverage
- satisfy the high user demand

To this aim efficient exploitation of the spectrum:

- 1. By adding unused or underused spectrum chunks by means of flexible spectrum usage paradigms (Cognitive Radio solutions)
- Or by decreasing the frequency reuse factor down to full frequency reuse (FFR) in multi-beam systems.
- The more aggressive frequency reuse (FFR)
 the more improvement of the system spectral efficiency
- The main transmission techniques that allow to use FFR are the advanced precoding/beamforming techniques for MU-MIMO schemes.

System Model

 The latency between the channel/location estimation phase and the transmission phase:

$$\Delta t = t_1 - t_0$$

$$= t_{ut,max} + 2t_{feeder} + t_p + t_{ad}$$

The Channel coefficients:

$$h_{i,n} = g_{i,n}^{(tx)} g_{i,n}^{(rx)} \frac{\lambda}{4\pi d_{i,n}} \sqrt{\frac{L_{i,n}}{\kappa BT_i}} e^{-j\frac{2\pi}{\lambda} d_{i,n}}$$

$$g^{(tx)}(u,v) = g_E(u,v) \sum_{m=1}^{N_H} \sum_{q=1}^{N_V} e^{jk_0(md_H u + qd_V v)}$$

$$L_i = L_{sha,i} + L_{atm,i} + L_{sci,i} + L_{CL,i}$$

System model

The signal received by the k_{th} user can be expressed as follows:

$$y_k = \underbrace{\mathbf{h}_k \mathbf{W}_{:,k} \, s_k}_{\text{intended}} + \underbrace{\sum_{i=1, i \neq k}^{K_{sch}} \mathbf{h}_k \mathbf{W}_{:,i} \, s_i + z_k}_{\text{interfering}}$$

Beamforming Matrix

$$N \times K_{sch}$$

Benchmark Beamforming Algorithms

CSI based Algorithms

• <u>ZF</u>

$$\mathbf{W}_{ZF} = (\mathbf{H}^H \mathbf{H})^{\dagger} \mathbf{H}^H$$

MMSE (RZF)

$$\mathbf{W}_{MMSE} = \arg\min_{\mathbf{W}} \mathrm{E}||\mathbf{HWs} + \mathbf{z} - \mathbf{s}||^{2}$$

$$\mathbf{W}_{MMSE} = \mathbf{H}(\mathbf{H}\mathbf{H}^H + \operatorname{diag}(\boldsymbol{\alpha})\mathbf{I}_{K_{sch}})^{-1}$$

User's location algorithm

MB

$$\mathbf{B} = [\mathbf{b}_1, \dots, \mathbf{b}_q, \cdots, \mathbf{b}_S]$$
 $\mathbf{W}_{MB} = [\mathbf{W}_{:,1}, \cdots, \mathbf{W}_{:,q}, \cdots, \mathbf{W}_{:,S}]$ where $\mathbf{W}_{:,k} = \mathbf{B}_{:,j}$ $j = \underset{i=1,\dots,N}{\min} ||\mathbf{C}_i - \mathbf{P}_k||^2$

The Proposed SLNR-based Beamforming

The main motivation is to overcome

- > The problem of maximizing SINR for all users
- > No closed form solution of the optimization problem (the beamformers are jointly optimized)

$$SLNR_k = \frac{||\mathbf{h}_k \mathbf{W}_{:,k}||^2}{1 + \sum_{i=1, i \neq k}^{K_{sch}} ||\mathbf{h}_i \mathbf{W}_{:,k}||^2}$$

SINR_k =
$$\frac{||\mathbf{h}_k \mathbf{W}_{:,k}||^2}{1 + \sum_{i=1, i \neq k}^{K_{sch}} ||\mathbf{h}_k \mathbf{W}_{:,i}||^2}$$

The Proposed SLNR-Based Beamforming

$$SLNR_k = \frac{\left|\left|\mathbf{h}_k \mathbf{W}_{:,k}\right|\right|^2}{1 + \sum_{i=1, i \neq k}^{K_{sch}} \left|\left|\mathbf{h}_i \mathbf{W}_{:,k}\right|\right|^2}$$

$$ext{SLNR}_k = rac{||\mathbf{h}_k \mathbf{W}_{:,k}||^2}{1+||\mathbf{Z}_k \mathbf{W}_{:,k}||^2}$$
 where $\mathbf{Z}_k = [\mathbf{h}_1|\cdots|\mathbf{h}_{k-1}|\mathbf{h}_{k+1}|\cdots|\mathbf{h}_{K_{sch}}]$

• The beamforming matrix targeted for the user k that maximizes its SLNR is given by:

$$\hat{\mathbf{W}}_{:,k} = \arg\max_{\mathbf{W}} \mathrm{SLNR}_k = \arg\max_{\mathbf{W}} \frac{||\mathbf{h}_k \mathbf{W}_{:,k}||^2}{1 + ||\mathbf{Z}_k \mathbf{W}_{:,k}||^2}$$

The optimal beamformer is linked to closed-form solution of the generalized eigenvalue problem

$$\hat{\mathbf{W}}_{:,k} \propto \text{max.eigenvector}((1 + \mathbf{Z}_k^H \mathbf{Z}_k)^{-1} \mathbf{h}_k^H \mathbf{h}_k) \longrightarrow \text{SLNR} = \lambda_{max}$$

Performance Evaluation Through Numerical Results and Simulation

System Parameters_Simulation Basis

- A comparative analysis are shown using the following parameters as system KPIs:
- ✓ Signal to Noise and Interference Ratio (SINR)

$$SINR_k = \frac{SNR_k}{1+INR_k}$$

✓ Spectral Effeciency (Rate)

$$\eta_k = \log_2(1 + SINR_k)$$

Power normalization: power that can be emitted by both the satellite and per antenna

SPC Normlization

- upper bound is imposed on the total on-board power
- Orthogonality is preserved

MPC Normalizaation

- The power per antenna is upper bounded
- Not the entire available on-board power is exploited

Parameter	Range
Carrier frequency	2GHz
System Band	S band (30 MHz)
Beamforming space	Feed
Receiver type	VSAT
Receiver scenario	Fixed
Propagation scenario	LOS, NLOS
System scenario	Urban
Number of tiers	5
Number of beams	91
Num. of scheduled users	91
Number of transmitters	1024
User density	$0.5 \text{ users/}Km^2$

LOS Scenario, **VSAT** terminals, BF in **feed** space, $P_t = 4 \text{ dBW/MHz}$

- The proposed SLNR beamforming provides better performance than MMSE, followed by ZF and MB
- In terms of normalization, SPC shows a good results for all beamforming schemes

NLOS Scenario, **VSAT** terminals, BF in **feed** space, $P_t = 4 \, dBW/MHz$

- The proposed SLNR beamforming provides better performance than MMSE, followed by MB and ZF (is the worst)
- In terms of normalization, SPC shows a better results for all beamforming schemes, followed by MPC and PAC.

The Proposed SLNR-based Beamforming

SLNR based beamforming

considering noise power in implementing

Is a regularized channel inversion scheme, with regularization factors customized to each user based on their operating SNR ©

ZF beamforming

not considering noise power in implementing beamforming vectors

Noise enhancement (:)

MMSE beamforming

 the same regularization for all users (factor) equal to the inverse of average SNR) (...)

Comparison LOS and NLOS scenario

Degradation in the performance when moving from LOS to NLOS scenario

- In the order of 4-5 bit/s/Hz for SLNR-based beamforming
- In the order of 3-4 bit/s/Hz for MMSE-SPC and 1-2 bit/s/Hz for MMSE-MPC.

Performance assessment at different transmitted power densities $P_t = \{1,4,7\}$ dBW/MHz, LOS scenario

By doubling the transmitted power:

- for SLNR scheme, gain in the order of 0.85-0.95 bit/sec/Hz
- for MMSE in order 0.4-0.5 bit/sec/Hz
- such results give additional advantage of the proposed scheme.

Conclusion

- Proposing a beamforming algorithm aimed at maximizing the figure of merit (SLNR)
- SLNR-based scheme eliminates the joint coupling between the beamforming vectors into multiple separate optimization problems of the targeting users
- System level assessment and comparison with benchmark solutions
 - CSI-based
 - Location-based
- The numerical results provided a significant better performance of SLNR-based beamforming than the optimal MMSE followed by MB and ZF beamforming in terms of spectral efficiency and SINR
- The power normalization SPC introduced the best performance for all beamforming algorithms followed by MPC
- Degradation in the performance when moving from LOS to NLOS propagation scenario
- The increased transmitted power density introduced slight improvement for SLNR and MMSE beamforming
- **Future Works**: considering multiple satellites in a mega-constellation scenario **p** global coverage

H2020 DYNASAT: (Dynamic spectrum sharing and bandwidth-efficient techniques for high-throughput MIMO Satellite systems)

- Research, develop, and demonstrate techniques for **bandwidth efficient transmission** and **efficient spectrum usage** for a **high throughput 5G/6G Satellite** access network infrastrucure, based on advanced NGSO-mega-constellation

https://www.dynasat.eu

https://www.linkedin.com/company/dynasat/

Thank you for your attention

Rabih Dakkak

Department of Electrical, Electronic and Information Engineering «Guglielmo Marconi»

mrabih.dakkak2@unibo.it

www.unibo.it